Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 2 - One-Dimensional Kinematics - Problems and Conceptual Exercises - Page 55: 112

Answer

(a) See the picture. (b) Above $\frac{h}{2}$. (c) $\frac{3}{4}h$

Work Step by Step

Let's find $h$ as function of $v_0$ $a=-g$, $\Delta x=h$ $v^2=v_0^2+2a\Delta x$ $0^2=v_0^2-2gh$ $h=\frac{v_0^2}{2g}$. The ball was thrown upward. Now, let's find the position as function of time equation for both balls. The initial time is when the second ball is thrown upward: - Ball 1: $v_{0_1}=0$ (at maximum height), $x_{0_1}=h=\frac{v_0^2}{2g}$, $a=-g$ $x_1=x_{0_1}+v_{0_1}t+\frac{1}{2}at^2$ $x_1=\frac{v_0^2}{2g}+0t+\frac{1}{2}(-g)t^2$ $x_1=\frac{v_0^2}{2g}-\frac{g}{2}t^2$ - Ball 2: $v_{0_2}=v_0$, $x_{0_2}=0$, $a=-g$ $x_2=x_{0_2}+v_{0_2}t+\frac{1}{2}at^2$ $x_2=0+v_0t+\frac{1}{2}(-g)t^2$ $x_2=v_0t-\frac{g}{2}t^2$ (a) See the picture: Ball 1: black line Ball 2: red line (b) According to the graph, the balls cross paths above $\frac{h}{2}$. (c) When the balls cross paths: $x_2=x_1$ $v_0t-\frac{g}{2}t^2=\frac{v_0^2}{2g}-\frac{g}{2}t^2$ $v_0t=\frac{v_0^2}{2g}$ $t=\frac{v_0^2}{2gv_0}=\frac{v_0}{2g}$. Replace this result in $x_1=\frac{v_0^2}{2g}-\frac{g}{2}t^2$ $x_1=\frac{v_0^2}{2g}-\frac{g}{2}t^2$ $x_1=\frac{v_0^2}{2g}-\frac{g}{2}(\frac{v_0}{2g})^2$ $x_1=\frac{v_0^2}{2g}-\frac{v_0^2}{8g}=\frac{4v_0^2}{8g}-\frac{v_0^2}{8g}=\frac{3v_0^2}{8g}$. But, $h=\frac{v_0^2}{2g}$ -> $v_0^2=2gh$ $x_1=\frac{3(2gh)}{8g}=\frac{3(2gh)}{8g}=\frac{3}{4}h$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.