Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 2 - One-Dimensional Kinematics - Problems and Conceptual Exercises - Page 55: 114

Answer

(a) $19.6~m$ (b) $2.00~s$

Work Step by Step

$h$ -> height Let the positive direction be downward. (a) First, let's find the velocity of the ball after it has covered the first quarter of the distance to the ground ($\frac{1}{4}h$). $a=g$, $v_0=0$, $\Delta x=\frac{1}{4}h$ $v^2=v_0^2+2a\Delta x$ $v^2=0^2+2g\frac{1}{4}h=\frac{1}{2}gh$ $v=±\sqrt {\frac{1}{2}gh}$ $v=\sqrt {\frac{1}{2}gh}$. The ball is moving downward (positive direction). Now, in the remaining three quarters of the distance to the ground, $\sqrt {\frac{1}{2}gh}$ is the initial velocity: $\Delta x=\frac{3}{4}h$, $a=g=9.81~m/s^2$, $t=1.00~s$, $v_0=\sqrt {\frac{1}{2}gh}$ $x=x_0+v_0t+\frac{1}{2}at^2$ $x-x_0=(\sqrt {\frac{1}{2}gh})t+\frac{1}{2}gt^2$ $\Delta x=(\sqrt {\frac{1}{2}gh})t+\frac{1}{2}gt^2$ $\frac{3}{4}h=(\sqrt {\frac{1}{2}gh})t+\frac{1}{2}gt^2$ $-(\sqrt {\frac{1}{2}gh})t=\frac{1}{2}gt^2-\frac{3}{4}h$. Multiply both sides by -1. $(\sqrt {\frac{1}{2}gh})t=\frac{3}{4}h-\frac{1}{2}gt^2$. Square both sides. (Restriction: $\frac{3}{4}h-\frac{1}{2}gt^2\geq0$ -> $\frac{3}{4}h\geq\frac{1}{2}gt^2$ -> $h\geq\frac{2}{3}gt^2$) $\frac{1}{2}ght^2=\frac{1}{4}g^2t^4-\frac{3}{4}ght^2+\frac{9}{16}h^2$ $0=\frac{1}{4}g^2t^4-\frac{5}{4}ght^2+\frac{9}{16}h^2$. Multiply both sides by 16. $0=4g^2t^4-20ght^2+9h^2$ or $(9)h^2+(-20gt^2)h+(4g^2t^4)=0$ This is a quadratic equation for $h$. $h=\frac{-(-20gt^2)±\sqrt {(-20gt^2)^2-4(9)(4g^2t^4)}}{2(9)}$ $h=\frac{20gt^2±\sqrt {400g^2h^2t^4-144g^2t^4}}{18}$ $h=\frac{20gt^2±\sqrt {256g^2h^2t^4}}{18}=\frac{20gt^2±16gt^2}{18}$ $h_1=\frac{36gt^2}{18}=2gt^2$. Notice that: $h_1\geq\frac{2}{3}gt^2$. Ok. $h_1=2(9.81~m/s^2)(1.00~s)^2=19.62~m\approx19.6~m$ $h_2=\frac{4gt^2}{18}=\frac{2}{9}gt^2$. Notice that: $h_2\lt\frac{2}{3}gt^2$. Not valid. We can conclude that: $h=19.6~m$ (b) $\Delta x=19.62~m$, $a=g=9.81~m/s^2$, $v_0=0$ $x=x_0+v_0t+\frac{1}{2}at^2$ $x-x_0=v_0t+\frac{1}{2}at^2$ $\Delta x=v_0t+\frac{1}{2}at^2$ $19.62~m=0t+\frac{1}{2}(9.81~m/s^2)t^2$ $39.24~m=(9.81~m/s^2)t^2$ $t=±\sqrt {\frac{39.24~m}{9.81~m/s^2}}$. The valid soution is: $t=2.00~s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.