Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 30 - The Nature of the Atom - Problems - Page 872: 5

Answer

$\alpha$ particle can come close to a distance of $d=7.2725\times10^{-14}m$

Work Step by Step

$\alpha$ particle carries a charge $q_{\alpha}=+2e=+2\times1.6\times10^{-19}C$ $q_{\alpha}=3.2\times10^{-19}C$ gold nucleus carries $Z=79$ protons charge on $1$ proton $=+e$ so charge on gold nucleus $q_{Au}=+79e=+79\times1.6\times10^{-19}C$ $q_{Au}=+1.264\times10^{-17}C$ Kinetic energy of $\alpha$ particle $(KE)_{\alpha}=5.0\times10^{-13}J$ this kinetic energy is completely converted to potential energy of $\alpha$ particle and gold nucleus system once $\alpha$ comes to halt in close vicinity of gold nucleus. suppose closest distance between $\alpha$ particle and gold nucleus is $d$ so potential energy of the system will be $V=-k\frac{|q_{\alpha}|\times |q_{Au}|}{d}$ when $\alpha$ particle comes to halt numerical value of kinetic energy and potential energy are equal so $(KE)_{\alpha}=k\frac{|q_{\alpha}|\times |q_{Au}|}{d}$ $d=k\frac{|q_{\alpha}|\times |q_{Au}|}{(KE)_{\alpha}}$ putting $q_{Au}=+1.264\times10^{-17}C$ $q_{\alpha}=3.2\times10^{-19}C$ $(KE)_{\alpha}=5.0\times10^{-13}J$ $k=8.99\times10^{9}N.m^2/C^2$ $d=(8.99\times10^{9}N.m^2/C^2)\frac{3.2\times10^{-19}C\times 1.264\times10^{-17}C}{5.0\times10^{-13}J}$ $d=7.2725\times10^{-14}m$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.