Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 30 - The Nature of the Atom - Problems - Page 872: 4

Answer

The kinetic energy of alpha particle will be $(KE)_{\alpha}=1.6867\times10^{-13}J$

Work Step by Step

Given target nucleus diameter $=1.4\times10^{-14}m$ mass of alpha particle $m_{\alpha}=6.64\times10^{-27}kg$ kinetic energy of alpha particle $(KE)_{\alpha}=\frac{1}{2}m_{\alpha}v^2$ so $(KE)_{\alpha}=\frac{1}{2}\frac {(m_{\alpha}v)^2}{m_{\alpha}}$ here $v$ is speed of the alpha particle momentum of alpha particle is given by $p_{\alpha}=m_{\alpha}v$ so $(KE)_{\alpha}=\frac{1}{2}\frac {(p_{\alpha})^2}{m_{\alpha}}$..........(1) given that $\alpha $ particle should have de Broglie wavelength $\lambda_{\alpha}$ equal to diameter of target nucleus so $\lambda_{\alpha}=1.4\times10^{-14}m$ from the definition of de Broglie wavelength $\lambda=\frac{h}{p}$ $\lambda_{\alpha}=\frac{h}{p_{\alpha}}$ or $p_{\alpha}=\frac{h}{\lambda_{\alpha}}$, putting this to equation (1) we will get $(KE)_{\alpha}=\frac{1}{2}\frac {(\frac{h}{\lambda_{\alpha}})^2}{m_{\alpha}}$ $(KE)_{\alpha}=\frac{h^2}{2\times m_{\alpha}\times \lambda_{alpha}^2}$......(2) putting values in equation (2) $h=6.626\times10^{-34} J.s$ $m_{\alpha}=6.64\times10^{-27}kg$ $\lambda_{\alpha}=1.4\times10^{-14}m$ $(KE)_{\alpha}=\frac{(6.626\times10^{-34} J.s)^2}{2\times 6.64\times10^{-27}kg\times (1.4\times10^{-14}m)^2}$ $(KE)_{\alpha}=1.6867\times10^{-13}J$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.