Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 30 - The Nature of the Atom - Problems - Page 872: 13

Answer

$6.56\times10^{-7}\,m$ and $1.22\times10^{-7}\,m$

Work Step by Step

The atom makes transition from $n=3$ to $n=2$ at first. Corresponding energy change $\Delta E=-2.18\times10^{-18}\,J(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}})=-2.18\times10^{-18}\,J(\frac{1}{2^{2}}-\frac{1}{3^{2}})$ $=-3.03\times10^{-19}\,J$ Negative sign indicates that the energy is emitted. $\Delta E=\frac{hc}{\lambda}$ $\implies$ Wavelength $ \lambda=\frac{hc}{\Delta E}$ where $h$ is the Planck's constant and $c$ is the speed of light. $\lambda =\frac{(6.626\times10^{-34}\,Js)(3.00\times10^{8}\,m/s)}{3.03\times10^{-19}\,J}=6.56\times10^{-7}\,m$ Then, atom makes transition from $n=2$ to $n=1$. Corresponding energy change $\Delta E=-2.18\times10^{-18}\,J(\frac{1}{1^{2}}-\frac{1}{2^{2}})=-1.635\times10^{-18}\,J$ $\lambda=\frac{hc}{\Delta E}=\frac{(6.626\times10^{-34}\,Js)(3.00\times10^{8}\,m/s)}{1.635\times10^{-18}\,J}=1.22\times10^{-7}\,m$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.