Answer
ratio of the density of the hydrogen nucleus to the complete hydrogen atom is given by $\frac {\rho_{n}}{\rho_{a}}=1.4879\times10^{14}$
Work Step by Step
Given that radius of the hydrogen atom $r_{a}=5.3\times10^{-11}m$
and radius of the nucleus of hydrogen atom $r_{n}=1\times10^{-15}m$
mass of proton $m_{p}=1.6726\times10^{-27}kg$
mass of electron $m_{e}=9.109\times10^{-31}kg$
mass of nucleus $m_{n}=m_{p}=1.6726\times10^{-27}kg$......(1)
mass of atom $m_{a}=m_{p}+m_{e}=1.6726\times10^{-27}kg+9.109\times10^{-31}kg$
mass of atom $m_{a}=1.67351\times10^{-27}kg$..................(2)
Volume of the atom
we know that the volume of the sphere with radius $r$ is given by
$V=\frac{4}{3}\pi r^{3}$
so volume of the atom $V_{a}=\frac{4}{3}\pi r_{a}^{3}$
$V_{a}=\frac{4}{3}\pi( 5.3\times10^{-11}m)^{3}$
$V_{a}=623.298\times10^{-33}m^{3}$
$V_{a}=6.23298\times10^{-31}m^{3}$.........equation((3)
Volume of the nucleus
we know that the volume of the sphere with radius $r$ is given by
$V=\frac{4}{3}\pi r^{3}$
so volume of the nucleus $V_{n}=\frac{4}{3}\pi r_{n}^{3}$
$V_{n}=\frac{4}{3}\pi( 1\times10^{-15}m)^{3}$
$V_{n}=4.186\times10^{-45}m^{3}$........equation(4)
density of hydrogen nucleus $\rho_{n}=\frac{m_{n}}{V_{n}}$
$m_{n}=m_{p}=1.6726\times10^{-27}kg$
$V_{n}=4.186\times10^{-45}m^{3}$
$\rho_{n}=\frac{1.6726\times10^{-27}kg}{4.186\times10^{-45}m^{3}}$
$\rho_{n}=0.3995\times10^{18}kg/m^3$
$\rho_{n}=3.995\times10^{17}kg/m^3$.................(5)
density of hydrogen atm $\rho_{a}=\frac{m_{a}}{V_{a}}$
$m_{a}=1.67351\times10^{-27}kg$.
$V_{a}=6.23298\times10^{-31}m^{3}$
$\rho_{a}=\frac{1.67351\times10^{-27}kg}{6.23298\times10^{-31}m^{3}}$
$\rho_{a}=0.26849\times10^{4}kg/m^3$
$\rho_{a}=2.6849\times10^{3}kg/m^3$.................(6)
ratio $\frac {\rho_{n}}{\rho_{a}}$ will be
$\frac {\rho_{n}}{\rho_{a}}$=$\frac {3.995\times10^{17}kg/m^3}{2.6849\times10^{3}kg/m^3}$
$\frac {\rho_{n}}{\rho_{a}}=1.4879\times10^{14}$