Answer
191580.48 N
Work Step by Step
Let's apply Bernoulli's equation to find the pressure difference.
$P+\frac{1}{2}\rho v^{2}+\rho gh= Constant$
Let's plug known values into this equation.
$P_{1}+\frac{1}{2}(1.29\space kg/m^{3})(225\space m/s)^{2}+0=P_{2}+\frac{1}{2}(1.29\space kg/m^{3})(251\space m/s)^{2}+0$
$P_{1}-P_{2}=\frac{1}{2}(1.29\space kg/m^{3})[(251\space m/s)^{2}-(225\space m/s)^{2}]=7982.5 Pa$
Lifting force = $(P_{1}-P_{2})A=7982.5\space Pa\times 24\space m^{2}=191580.48\space N$