Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 11 - Fluids - Problems - Page 311: 53

Answer

Outer diameter = 6.2 cm, Inner diameter = 5.27 cm

Work Step by Step

When the system is at equilibrium. We can write Buoyant force = Weight of the shell $F_{B}=mg$ According to the principle of Archimedes, we can rewrite the above equation. $V\rho_{w}g=mg=> \frac{4}{3}\pi R_{o}^{3}\rho_{w}=m$ $R_{o}=\sqrt[3] {\frac{3m}{4\pi\rho_{w}}}=\sqrt[3] {\frac{3\times1\space kg}{4\pi(1000\space kg/m^{3})}}=6.2\space cm$ = Outer diameter We can write, Mass of the shell $m= (V-V_{h})\rho_{s}$ $m=[\frac{4}{3}\pi R_{o}^{3}-\frac{4}{3}\pi R_{i}^{3}]\rho_{s}$ $\frac{3m}{4\pi \rho_{s}}=R_{o}^{3}-R_{i}^{3}=>R_{i}^{3}=R_{o}^{3}-\frac{3m}{4\pi \rho_{s}}$ $R_{i}^{3}=(6.2\times10^{-2}m)^{3}-(\frac{3(1\space kg)}{4\pi(2600\space kg/m^{3})})$ $R_{i}=5.27\space cm$ = Inner diameter
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.