Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 8 - Potential Energy and Conservation of Energy - Problems - Page 206: 51d

Answer

$62.63\dfrac {m}{s}$

Work Step by Step

Lets calculate magnitude of work done by the friction force: The friction force is: $F_{f}=\mu mg\cos \theta $ Also, $L\sin \theta =H\Rightarrow \sin \theta =\dfrac {H}{L}=\dfrac {300}{500}=0.6\Rightarrow \theta =37.$ So the magnitude of the work done will be: $W_{f}=F_{f}\times L=\mu {m}g\cos \theta \times L=0.25\times 520\times \cos 37\times 500\times 9.8\approx 5.1\times 10^{5}J$ Initial potential energy of the rock is: $U_{top}=U_{buttom}+mg\Delta h=0+520\times 9.8\times 300\approx 1.53\times 10^{6}J$ So the kinetic energy at bottom will be: $E_{k}=U_{top}-W_{f}\approx 1.02\times 10^{6}J$ So the speed will be: $\dfrac {mv^{2}}{2}=E_{k}\Rightarrow v=\sqrt {\dfrac {2E_{k}}{m}}=\sqrt {\dfrac {2\times 1.02\times 10^{6}}{520}}\approx 62.63\dfrac {m}{s}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.