Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 8 - Potential Energy and Conservation of Energy - Problems - Page 206: 48

Answer

We use Eq. $8-31$ to obtain $\Delta E_{\mathrm{th}}=f_{k} d=(10 \mathrm{N})(5.0 \mathrm{m})=50 \mathrm{J},$ and $\mathrm{Eq} .7-8$ to get $$ W=F d=(2.0 \mathrm{N})(5.0 \mathrm{m})=10 \mathrm{J} $$ Similarly, Eq. $8-31$ gives $$ \begin{aligned} W &=\Delta K+\Delta U+\Delta E_{\mathrm{th}} \\ 10 &=35+\Delta U+50 \end{aligned} $$ which yields $\Delta U=-75 \mathrm{J} .$ By Eq. $8-1,$ then, the work done by gravity is $$W=-\Delta U=75 \mathrm{J}$$

Work Step by Step

We use Eq. $8-31$ to obtain $\Delta E_{\mathrm{th}}=f_{k} d=(10 \mathrm{N})(5.0 \mathrm{m})=50 \mathrm{J},$ and $\mathrm{Eq} .7-8$ to get $$ W=F d=(2.0 \mathrm{N})(5.0 \mathrm{m})=10 \mathrm{J} $$ Similarly, Eq. $8-31$ gives $$ \begin{aligned} W &=\Delta K+\Delta U+\Delta E_{\mathrm{th}} \\ 10 &=35+\Delta U+50 \end{aligned} $$ which yields $\Delta U=-75 \mathrm{J} .$ By Eq. $8-1,$ then, the work done by gravity is $$W=-\Delta U=75 \mathrm{J}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.