Answer
$P(E) = 1.0$
Work Step by Step
Use the formula of probability
$ P(E) = \frac{1}{e^{E_1 - E_F/kT} + 1}$
For Silver,
$E_F=5.5eV$
$T=0^o C = 273 K$
$KT = \frac{(1.381\times 10^{-23} J) (273K)}{1.602 \times 10^{-19} J/eV}$
$KT = 0.02353eV$
For this question, given E = 4.4 eV
Solve for P
$e^{E_1 - E_F/kT} = \frac{(4.4 eV - 5.5eV)}{0.02353eV} = -46.25$
$ P(E) = \frac{1}{e^{-46.25} + 1}$
$P(E) = 1.0$