Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Problems - Page 1182: 24a

Answer

$h = 6.59\times 10^{-34}~J~s$

Work Step by Step

We can write an expression for the photoelectric effect: $hf = K_{max}+\Phi$ $\frac{hc}{\lambda} = K_{max}+\Phi$ Then: $\frac{hc}{\lambda_1} = K_{max,1}+\Phi$ $\frac{hc}{\lambda_2} = K_{max,2}+\Phi$ We can subtract the first equation from the second equation: $\frac{hc}{\lambda_2} - \frac{hc}{\lambda_1} = K_{max,2} - K_{max,1}$ $hc~(\frac{1}{\lambda_2} - \frac{1}{\lambda_1}) = K_{max,2} - K_{max,1}$ $h = \frac{K_{max,2} - K_{max,1}}{c~(\frac{1}{\lambda_2} - \frac{1}{\lambda_1})}$ $h = \frac{(0.820~eV-1.85~eV)(1.6\times 10^{-19}~J/eV)}{(3.0\times 10^8~m/s)~(\frac{1}{400\times 10^{-9}~m} - \frac{1}{300\times 10^{-9}~m})}$ $h = 6.59\times 10^{-34}~J~s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.