Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 16 - Waves-I - Problems - Page 477: 77b

Answer

$t \propto \frac{1}{\sqrt{\Delta l}}$ if $\Delta l \lt \lt l$ $t$ is constant if $\Delta l \gt \gt l$

Work Step by Step

We can find the tension in the rubber band: $\tau = k~\Delta l$ We can find the wave speed: $v = \sqrt{\frac{\tau}{\mu}}$ $v = \sqrt{\frac{k~\Delta l}{m/(l+\Delta l)}}$ $v = \sqrt{\frac{k~\Delta l~(l+\Delta l)}{m}}$ We can find an expression for $v$ if $\Delta l \lt \lt l$: $v = \sqrt{\frac{k~\Delta l~(l+\Delta l)}{m}} \approx \sqrt{\frac{k~\Delta l~(l)}{m}}$ We can find an expression for the time if $\Delta l \lt \lt l$: $t = \frac{l+\Delta l}{v}$ $t \approx \frac{l}{\sqrt{\frac{k~\Delta l~(l)}{m}}}$ $t \approx \sqrt{\frac{m~l}{k~\Delta l}}$ Therefore, $t \propto \frac{1}{\sqrt{\Delta l}}$ if $\Delta l \lt \lt l$ We can find an expression for $v$ if $\Delta l \gt \gt l$: $v = \sqrt{\frac{k~\Delta l~(l+\Delta l)}{m}} \approx \sqrt{\frac{k~(\Delta l)^2}{m}}$ We can find an expression for the time if $\Delta l \gt \gt l$: $t = \frac{l+\Delta l}{v}$ $t \approx \frac{\Delta l}{\sqrt{\frac{k~(\Delta l)^2}{m}}}$ $t \approx \sqrt{\frac{m}{k}}$ Therefore, $t$ is constant if $\Delta l \gt \gt l$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.