Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 16 - Waves-I - Problems - Page 474: 36

Answer

No resultant wave is produced in this case. So the resultant amplitude is $0$.

Work Step by Step

The given four waves are: $y_1(x, t)= (4.00\;mm)\sin(2\pi x-400pt)$ $y_2(x, t)=(4.00\;mm)\sin(2\pi x-400\pi t+0.7\pi)$ $y_3(x, t)=(4.00 mm)\sin(2\pi x-400\pi t +\pi)$ or, $y_3(x, t)=-(4.00 mm)\sin(2\pi x-400\pi t)$ $y_4(x, t)=(4.00\;mm) \sin(2\pi x-400\pi t+1.7\pi)$ Now, $y_1(x, t)+y_3(x, t)=0$ $y_1(x, t)+y_3(x, t)+y_2(x, t)=(4.00\;mm) \sin(2\pi x-400\pi t+0.7\pi)$ $y_1(x, t)+y_2(x, t)+y_3(x, t)+y_4(x, t)=(4.00\;mm) \sin(2\pi x-400\pi t+0.7\pi)+(4.00\;mm) \sin(2\pi x-400\pi t+1.7\pi)$ or, $y_1(x, t)+y_2(x, t)+y_3(x, t)+y_4(x, t)=(4.00\;mm)[\sin(2\pi x-400\pi t+0.7\pi)+ \sin(2\pi x-400\pi t+1.7\pi)]$ or, $y_1(x, t)+y_2(x, t)+y_3(x, t)+y_4(x, t)=(4.00\;mm)[\sin\Big(\frac{2\pi x-400\pi t+0.7\pi+2\pi x-400\pi t+1.7\pi}{2}\Big)\cos\Big(\frac{2\pi x-400\pi t+0.7\pi-2\pi x+400\pi t-1.7\pi}{2}\Big)$ or, $y_1(x, t)+y_2(x, t)+y_3(x, t)+y_4(x, t)=(4.00\;mm)[\sin(2\pi x-400\pi t+1.2\pi)\cos(0.5\pi)$ or, $y_1(x, t)+y_2(x, t)+y_3(x, t)+y_4(x, t)=(4.00\;mm\cos(0.5\pi))[\sin(2\pi x-400\pi t+1.2\pi)$ or, $y_1(x, t)+y_2(x, t)+y_3(x, t)+y_4(x, t)=0$ Thus, no resultant wave is produced in this case. So the resultant amplitude is $0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.