Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 10 - Rotation - Problems - Page 288: 26d

Answer

The angular speed of the flywheel is $$ \omega=(75 \mathrm{rev} / \mathrm{min})(2 \pi \mathrm{rad} / \mathrm{rev})(1 \min / 60 \mathrm{s})=7.85 \mathrm{rad} / \mathrm{s} $$ With $r=0.50 \mathrm{m},$ the radial (or centripetal) acceleration is given by Eq. $10-23 :$ $$ a_{r}=\omega^{2} r=(7.85 \mathrm{rad} / \mathrm{s})^{2}(0.50 \mathrm{m}) \approx 31 \mathrm{m} / \mathrm{s}^{2} $$ which is much bigger than $a_{t}$ . Consequently, the magnitude of the acceleration is $$ |\vec{a}|=\sqrt{a_{r}^{2}+a_{t}^{2}} \approx a_{r}=31 \mathrm{m} / \mathrm{s}^{2} . $$

Work Step by Step

The angular speed of the flywheel is $$ \omega=(75 \mathrm{rev} / \mathrm{min})(2 \pi \mathrm{rad} / \mathrm{rev})(1 \min / 60 \mathrm{s})=7.85 \mathrm{rad} / \mathrm{s} $$ With $r=0.50 \mathrm{m},$ the radial (or centripetal) acceleration is given by Eq. $10-23 :$ $$ a_{r}=\omega^{2} r=(7.85 \mathrm{rad} / \mathrm{s})^{2}(0.50 \mathrm{m}) \approx 31 \mathrm{m} / \mathrm{s}^{2} $$ which is much bigger than $a_{t}$ . Consequently, the magnitude of the acceleration is $$ |\vec{a}|=\sqrt{a_{r}^{2}+a_{t}^{2}} \approx a_{r}=31 \mathrm{m} / \mathrm{s}^{2} . $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.