Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 10 - Rotation - Problems - Page 288: 17a

Answer

$44.18rad$

Work Step by Step

İf flywheel has constant angular acceleration, then the angle $\theta (t) $ will be: $\theta \left( t\right) =\theta _{0}+w_{0}t+\dfrac {\alpha t^{2}}{2}\left.......( 1\right) $ where $\theta_{0}=0$ , $w_{0}=4.7 \frac{rad}{s}$ and $\alpha =-0.25\dfrac {rad}{s^{2}}$ First lets find time at which the flywheel stops. İn order to find the maximum value of $\theta$ lets solve equation (1): $\dfrac {α}{2}t^{2}+w_{0}t+\left( \theta _{0}-\theta \left( t\right) \right) =0\Rightarrow t_{1,2}=\dfrac {-w_{0}\pm \sqrt {\left( w_{0}^{2}-4\times \dfrac {α}{2}\times \left( \theta _{0}-\theta \right) \right) }}{2\times \dfrac {α}{2}}...(2)$ If we simplify (2), we get $t_{1,2}=\dfrac {-w_{0}\pm \sqrt {\left( w_{0}^{2}-2α\times \left( \theta _{0}-\theta \right) \right) }}{α}.......(3)$ Given the numbers $\theta _{0}=0;w_{0}=4.7\dfrac {rad}{s};\alpha =-0.25\dfrac {rad}{s^{2}}$, using (3), we get: $t_{1,2}=\dfrac {-4.7\pm \sqrt {\left( 4.7^{2}+0.5\left( 0-\theta _{0}\right) \right) }}{-0.25}=\dfrac {\pm \sqrt {\left( 4.7^{2}-0.5\theta _{0}\right) }-4.7}{0.25}\Rightarrow 0.5\theta _{0}\leq 4.7^{2}\Rightarrow \theta _{0}\leq \dfrac {4.7^{2}}{0.5}=44.18rad $ Therefore, $\theta _{\max }=44.18rad$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.