Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 10 - Rotation - Problems - Page 288: 17d

Answer

We find values for } $t_{2}$ when the angular displacement (relative to its orientation at t=0) is $\theta_{2}=-10.5$ rad. Using $\mathrm{Eq} .10-13$ and the quadratic formula, we have $$ \theta_{2}=\omega_{0} t_{2}+\frac{1}{2} \alpha t_{2}^{2} \Rightarrow t_{2}=\frac{-\omega_{0} \pm \sqrt{\omega_{0}^{2}+2 \theta_{2} \alpha}}{\alpha} $$ which yields the two roots $-2.1 \mathrm{s}$ and 40 $\mathrm{s}$ . Thus, at $t=-2.1 \mathrm{s}$ the reference line will be at $$\theta_{2}=-10.5 \mathrm{rad} $$

Work Step by Step

We find values for } $t_{2}$ when the angular displacement (relative to its orientation at t=0) is $\theta_{2}=-10.5$ rad. Using $\mathrm{Eq} .10-13$ and the quadratic formula, we have $$ \theta_{2}=\omega_{0} t_{2}+\frac{1}{2} \alpha t_{2}^{2} \Rightarrow t_{2}=\frac{-\omega_{0} \pm \sqrt{\omega_{0}^{2}+2 \theta_{2} \alpha}}{\alpha} $$ which yields the two roots $-2.1 \mathrm{s}$ and 40 $\mathrm{s}$ . Thus, at $t=-2.1 \mathrm{s}$ the reference line will be at $$\theta_{2}=-10.5 \mathrm{rad} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.