Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 10 - Rotation - Problems - Page 288: 18a

Answer

A complete revolution is an angular displacement of $\Delta \theta=2 \pi$ rad, so the angular velocity in rad/s is given by $\omega=\Delta \theta / T=2 \pi / T$ . The angular acceleration is given by $$ \alpha=\frac{d \omega}{d t}=-\frac{2 \pi}{T^{2}} \frac{d T}{d t} $$ For the pulsar described in the problem, we have $$ \frac{d T}{d t}=\frac{1.26 \times 10^{-5} \mathrm{s} / \mathrm{y}}{3.16 \times 10^{7} \mathrm{s} / \mathrm{y}}=4.00 \times 10^{-13} \text { . } $$ $$ \alpha=-\left[\frac{2 \pi}{(0.033 \mathrm{s})^{2}}\left(4.00 \times 10^{-13}\right)=-2.3 \times 10^{-9} \mathrm{rad} / \mathrm{s}^{2} \text { . }\right. $$ the negative sign shows that angular acceleration is reverse (angular-velocity) and pulsar is slowing down

Work Step by Step

A complete revolution is an angular displacement of $\Delta \theta=2 \pi$ rad, so the angular velocity in rad/s is given by $\omega=\Delta \theta / T=2 \pi / T$ . The angular acceleration is given by $$ \alpha=\frac{d \omega}{d t}=-\frac{2 \pi}{T^{2}} \frac{d T}{d t} $$ For the pulsar described in the problem, we have $$ \frac{d T}{d t}=\frac{1.26 \times 10^{-5} \mathrm{s} / \mathrm{y}}{3.16 \times 10^{7} \mathrm{s} / \mathrm{y}}=4.00 \times 10^{-13} \text { . } $$ $$ \alpha=-\left[\frac{2 \pi}{(0.033 \mathrm{s})^{2}}\left(4.00 \times 10^{-13}\right)=-2.3 \times 10^{-9} \mathrm{rad} / \mathrm{s}^{2} \text { . }\right. $$ the negative sign shows that angular acceleration is reverse (angular-velocity) and pulsar is slowing down
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.