Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 1 - Sections 1.1-1.8 - Exercises - Cumulative Problems - Page 41: 128

Answer

$$10.8 \space kg$$

Work Step by Step

1. Calculate the total mass of the sphere: ** Lead has a density of $11.4 \space g/cm^3$. (See table 1.4, page 19) Sphere volume = $\frac {4\pi r^3} 3$ $radius = 5.00 \space cm$ $V = \frac{4 \pi (5.00 \space cm)^3}{3} = 524 \space cm^3$ Mass = $ V \times \rho = 524 \space cm^3 \times \frac{11.4 \space g}{cm^3} = 5970 \space g$ 2. Find the amount of that ore that is required to obtain this mass of lead. $5970 \space g \space (Lead) \times \frac{100 \space \% (Galena)}{86.6 \space \% (Lead)} \times \frac{100 \space \% (Ore)}{68.5 \space \% (Galena)} = 1.0 \times 10^4 \space g (Ore)$ But, that calculation assumes 100% efficiency in the extraction, which is not true for this situation. $1.0 \times 10^4 \space g (Ore) \times \frac{100 \space \% (Raw \space ore)}{92.5 \space \% (Ore)} = 1.08 \times 10^4 \space g (Raw \space ore) \times \frac{1 \space kg}{10^3 \space g} = 10.8 \space kg \space (Raw \space ore)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.