Answer
$7.6 g/cm^{3}$
Work Step by Step
1. Calculate the volume of the cylinder in $in^{3}$
$V=r^{2} \times pi \times l=(0.22 in)^{2} \times 3.14 \times 2.16 in = 0.3284 in^{3}$
2. Convert $in^{3}$ into $cm^{3}$ by using conversion factor $1in^{3} = 16.3871cm^{3}$
$V = 0.3284 in^{3}\times 16.3871cm^{3}/ in^{3}= 5.3821cm^{3}$
3. Divide the mass over volume to find density of the cylinder
$p=\frac{m}{V}=\frac{41g}{5.3821 cm^{3}}=7.618 g/cm^{3}\approx7.6g/cm^3$