Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 1 - Sections 1.1-1.8 - Exercises - Cumulative Problems - Page 41: 123

Answer

The proton occupies $\frac{1}{1.48 \times 10^{14}}$ of the volume of the atom , or $6.755 \times 10^{-15} $ percent.

Work Step by Step

1. Calculate the volume of the atom by using conversion $1pm= 10^{-19}cm$ and $52.9 pm = 5.29 \times 10 ^{-9} cm$. $V_{at}= \frac{4 \times π \times r^{3}}{3}= \frac{4 \times 3.14 \times (5.29 \times 10^{-9}cm)^{3}}{3} = 6.2009 \times 10^{-25} cm^{3} $ 2. Calculate the volume of the proton: $V_{p} = \frac{4 \times π \times r^{3}}{3}= \frac{4 \times 3.14 \times (1.0 \times 10^{-13}cm)^{3}}{3} = 4.1888 \times 10^{-39} cm^{3} $ 3. To find ration, divide the volume of proton by the volume of the atom: $\frac{V_{p}}{V_{at}} = \frac{4.1888 \times 10^{-39} cm^{3}}{6.2009 \times 10^{-25} cm^{3}}=\frac{1}{1.48 \times 10^{14}}=6.755 \times 10^{-15} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.