Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 6 - Inverse Circular Functions and Trigonometric Equations - Section 6.4 Equations Involving Inverse Trigonometric Functions - 6.4 Exercises - Page 280: 42

Answer

$x = 0$

Work Step by Step

We can use the following identity: $sin^{-1}~a+sin^{-1}~b = sin^{-1}(a\sqrt{1-b^2}+b\sqrt{1-a^2})$ We can find the solution: $sin^{-1}~x+tan^{-1}~x = 0$ $sin^{-1}~x+sin^{-1}~\frac{x}{\sqrt{x^2+1}} = 0$ $sin^{-1}~(x~\sqrt{1-\frac{x^2}{x^2+1}}+\frac{x}{\sqrt{x^2+1}}\sqrt{1-x^2}) = 0$ $x~\sqrt{1-\frac{x^2}{x^2+1}}+\frac{x}{\sqrt{x^2+1}}\sqrt{1-x^2} = 0$ $\frac{x}{\sqrt{x^2+1}}+\frac{x\sqrt{1-x^2} }{\sqrt{x^2+1}}= 0$ $x+x\sqrt{1-x^2} = 0$ $x(1+\sqrt{1-x^2}) = 0$ $x = 0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.