Answer
$\frac{3}{4}$
Work Step by Step
Given: $cot^{-1}x=tan^{-1}\frac{4}{3}$
Consider $tan^{-1}\frac{4}{3}=P$
$tan P=\frac{4}{3}$
Apply trigonometric identity for tangent.
$tanx=\frac{opp}{adj}=\frac{4}{3}$
Thus, $hyp=\sqrt {4^{2}+3^{2}}=\sqrt {16+9}=\sqrt {25}=5$
Likewise, $cotP=\frac{adj}{opp}=\frac{3}{4}$
$cot^{-1}x=P$ gives $x=cotP$
Hence, $x=\frac{3}{4}$