Answer
$\frac{12}{5}$
Work Step by Step
Given: $arctanx=arccos\frac{5}{13}$
Consider $arccos\frac{5}{13}=P$
$cos P=\frac{5}{13}$
Apply trigonometric identity for cosine.
$cosx=\frac{adj}{hyp}=\frac{5}{13}$
Thus, $opp=\sqrt {13^{2}-5^{2}}=\sqrt {169-25}=12$
Likewise, $tanP=\frac{opp}{adj}=\frac{12}{5}$
$arctanx=P$ gives $x=tanP$
Hence, $x=\frac{12}{5}$