Answer
$\frac{4}{5}$
Work Step by Step
Given: $cos^{-1}x=sin^{-1}\frac{3}{5}$
Consider $sin^{-1}\frac{3}{5}=P$
$sin P=\frac{3}{5}$
Apply trigonometric identity for sine.
$sinx=\frac{opp}{hyp}=\frac{3}{5}$
Thus, $adj=\sqrt {5^{2}-3^{2}}=\sqrt {25-9}=\sqrt {16}=4$
Likewise, $cosP=\frac{adj}{hyp}=\frac{4}{5}$
$cos^{-1}x=P$ gives $x=cosP$
Hence, $x=\frac{4}{5}$