Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 2 - Acute Angles and Right Triangles - Section 2.2 Trigonometric Functions of Non-Acute Angles - 2.2 Exercises - Page 62: 29

Answer

$sin$(-300)$^{\circ}$ = $\frac{\sqrt3}{2}$ $cos$(-300)$^{\circ}$ = $\frac{1}{2}$ $tan$(-300)$^{\circ}$ = $\sqrt3$ $cot$(-300)$^{\circ}$ = $\frac{\sqrt3}{3}$ $csc$(-300)$^{\circ}$ = $\frac{2\sqrt3}{3}$ $sec$(-300)$^{\circ}$ = 2

Work Step by Step

-300$^{\circ}$ We can solve for the functions by using the coterminal angle. We can find the coterminal angle by adding or subtracting 360$^{\circ}$ as many times as needed. -300$^{\circ}$ + 360$^{\circ}$ = 60$^{\circ}$ $sin$(60)$^{\circ}$ = $\frac{\sqrt3}{2}$ $cos$(60)$^{\circ}$ = $\frac{1}{2}$ $tan$(60)$^{\circ}$ = $\frac{\sqrt3}{1}$ = $\sqrt3$ $cot$(60)$^{\circ}$ = $\frac{1}{\sqrt3}$ = $\frac{\sqrt3}{3}$ $csc$(60)$^{\circ}$ = $\frac{2}{\sqrt3}$ = $\frac{2\sqrt3}{3}$ $sec$(60)$^{\circ}$ = $\frac{2}{1}$ = 2
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.