Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 2 - Acute Angles and Right Triangles - Section 2.2 Trigonometric Functions of Non-Acute Angles - 2.2 Exercises - Page 62: 27

Answer

-$sin$(1305)$^{\circ}$ = $\frac{-\sqrt2}{2}$ -$cos$(1305)$^{\circ}$ = $\frac{-\sqrt2}{2}$ $tan$(1305)$^{\circ}$ = 1 $cot$(1305)$^{\circ}$ = 1 -$csc$(1305)$^{\circ}$ = -$\sqrt2$ -$sec$(1305)$^{\circ}$ = -$\sqrt2$

Work Step by Step

1305$^{\circ}$ We can solve for the functions by using the coterminal angle. We can find the coterminal angle by adding or subtracting 360$^{\circ}$ as many times as needed. 1305$^{\circ}$ - 360$^{\circ}$ = 945$^{\circ}$ 945$^{\circ}$ - 360$^{\circ}$ = 585$^{\circ}$ 585$^{\circ}$ - 360$^{\circ}$ = 225$^{\circ}$ Next we must find the reference angle: 225$^{\circ}$ - 180$^{\circ}$ = 45$^{\circ}$ -$sin$(45)$^{\circ}$ = $\frac{-\sqrt2}{2}$ -$cos$(45)$^{\circ}$ = $\frac{-\sqrt2}{2}$ $tan$(45)$^{\circ}$ = $\frac{-\sqrt2}{-\sqrt2}$ = 1 $cot$(45)$^{\circ}$ = $\frac{-\sqrt2}{-\sqrt2}$ = 1 -$csc$(45)$^{\circ}$ = $\frac{-\sqrt2}{1}$ = -$\sqrt2$ -$sec$(45)$^{\circ}$ = $\frac{-\sqrt2}{1}$ = -$\sqrt2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.