Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 13 - A Preview of Calculus: The Limit, Derivative, and Integral of a Function - Section 13.2 Algebra Techniques for Finding Limits - 13.2 Assess Your Understanding - Page 903: 56

Answer

$$1$$

Work Step by Step

In order to simplify the above expression, we will use the following rules. $(a) \lim\limits_{x \to a} [p(x) \cdot q(x)]=\lim\limits_{x \to a} p(x) \lim\limits_{x \to a} q(x) \\ (b) \lim\limits_{x \to a} k(x)=k(a)$ where $a$ as a constant. Thus, we have: $\lim\limits_{x\to 0}\dfrac{\sin^2 x+\sin x(\cos x-1)}{x^2}\\=\lim\limits_{x\to 0}\dfrac{\sin^2 x}{x^2} +\lim\limits_{x\to 0} \dfrac{\sin x(\cos x-1)}{x^2} \\=\lim\limits_{x\to 0} (\dfrac{\sin{x}}{x})^2+ [\lim\limits_{x\to 0} \dfrac{\sin x}{x} \cdot \lim\limits_{x\to 0} \dfrac{\cos x-1}{x}]\\=1+1(0)\\=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.