Answer
$$0$$
Work Step by Step
In order to simplify the given expression, we will use the following rules.
$(a) \lim\limits_{x \to a} \dfrac{p(x)}{q(x)}=\dfrac{\lim\limits_{x \to a} p(x)}{\lim\limits_{x \to a} q(x)} \\ (b) \lim\limits_{x \to a} k(x)=k(a)$ ;
where $a$ is a constant.
---
Thus, we have:
$$ \lim\limits_{x \to -1} \dfrac{(x^3+2x^2+x)}{(x^4+x^3+2x+2)}=\lim\limits_{x \to -1} \dfrac{x(x+1)^2}{(x+1)(x^3+2)} \\=\dfrac{\lim\limits_{x \to -1} x(x+1)(x+1)}{\lim\limits_{x \to -1} (x +1)(x^3+2)}\\=\dfrac{\lim\limits_{x \to -1} x(x+1)}{\lim\limits_{x \to -1} x^3+2} \\=\dfrac{(-1)(-1+1)}{(-1+2)} \\=0$$