Answer
$1$
Work Step by Step
When $f(x) \geq 0$ then, we have $\lim\limits_{x \to a} \sqrt {k(x)}=\sqrt {\lim\limits_{x \to a} k(a)}$
where $a$ is a constant.
Thus, we have:
$\lim\limits_{x \to 0} \sqrt {1-2x}=\sqrt {\lim\limits_{x \to 0} (1-2x)} \\=\sqrt {1-(2)(0)} \\=\sqrt 1 \\=1$