Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.4 - Multiplicative Inverses of Matrices and Matrix Equations - Exercise Set - Page 934: 91

Answer

The value is: $a=-2,a=3$.

Work Step by Step

Consider the given matrix: $\left[ \begin{matrix} 1 & a+1 \\ a-2 & 4 \\ \end{matrix} \right]$ The determinant of the matrix is given by: $\left| \begin{matrix} 1 & a+1 \\ a-2 & 4 \\ \end{matrix} \right|$ The matrix will not be invertible when the value of its determinant is zero. Now, we will solve the determinant: $\begin{align} & \left| \begin{matrix} 1 & a+1 \\ a-2 & 4 \\ \end{matrix} \right|=4-\left( a-2 \right)\left( a+1 \right) \\ & =4-\left( {{a}^{2}}+a-2a-2 \right) \\ & =4-{{a}^{2}}+a+2 \\ & =-{{a}^{2}}+a+6 \end{align}$ Solve the quadratic equation by splitting its middle term: $\begin{align} & {{a}^{2}}-a-6=0 \\ & {{a}^{2}}-3a+2a-6=0 \\ & a\left( a-3 \right)+2\left( a-3 \right)=0 \\ & \left( a-3 \right)\left( a+2 \right)=0 \end{align}$ Either, $\begin{align} & \left( a-3 \right)=0 \\ & a=3 \end{align}$ Or, $\begin{align} & \left( a+2 \right)=0 \\ & a=-2 \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.