Answer
The inverse is $ A=\left[ \begin{matrix}
-1 & -0.5 \\
-3 & -2 \\
\end{matrix} \right]$.
Work Step by Step
Consider the matrix $ A=\left[ \begin{matrix}
-4 & 1 \\
6 & -2 \\
\end{matrix} \right]$.
We have to find the inverse of matrix $ A $ by using a graphing calculator. We will follow the steps given below:
(1) We select the matrix $ A $ from the matrix edit menu and then enter or accept the dimensions.
(2) Use ${{2}^{nd}}$ and press the matrix button.
(3) Select the matrix $ A $ and use the function ${{X}^{-1}}$ for the inverse of matrix $ A $ and press ENTER.
(4) Find the ${{A}^{-1}}$
Thus, the inverse of the matrix $ A $ is $\left[ \begin{matrix}
-1 & -.5 \\
-3 & -2 \\
\end{matrix} \right]$
Now, check the result: show that $ A{{A}^{-1}}=I $
So, we multiply matrix $ A $ with ${{A}^{-1}}$ to obtain the identity matrix. Thus the inverse of the given matrix is correct.