Answer
The provided statement is false.
Work Step by Step
Assuming the matrix,
$A=\left[ \begin{matrix}
2 & 1 \\
3 & 1 \\
\end{matrix} \right],B=\left[ \begin{matrix}
4 & 7 \\
1 & 2 \\
\end{matrix} \right]$
Now, we will simplify the expression ${{\left[ A+B \right]}^{-1}}={{A}^{-1}}+{{B}^{-1}}$ as below,
$A=\left[ \begin{matrix}
2 & 1 \\
3 & 1 \\
\end{matrix} \right],B=\left[ \begin{matrix}
4 & 7 \\
1 & 2 \\
\end{matrix} \right]$
For the expression,
$\begin{align}
& \left[ A+B \right]=\left[ \begin{matrix}
2 & 1 \\
3 & 1 \\
\end{matrix} \right]+\left[ \begin{matrix}
4 & 7 \\
1 & 2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
2+4 & 1+7 \\
3+1 & 1+2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
6 & 8 \\
4 & 3 \\
\end{matrix} \right]
\end{align}$
Now,
The inverse of matrix $\left[ A+B \right]$ is equal to:
${{\left[ A+B \right]}^{-1}}=\frac{1}{ad-bc}\left[ \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right]$
Now, compare the matrix to the original matrix.
So,
$\begin{align}
& a=6 \\
& b=8 \\
& c=4 \\
& d=3
\end{align}$
Now, the inverse is:
${{\left[ A+B \right]}^{-1}}=\frac{1}{ad-bc}\left[ \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right]$
Substitute the values to get,
$\begin{align}
& {{\left[ A+B \right]}^{-1}}=\frac{1}{ad-bc}\left[ \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right] \\
& =\frac{1}{-6}\left[ \begin{matrix}
3 & -8 \\
-4 & 6 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-\frac{1}{2} & \frac{4}{3} \\
\frac{2}{3} & -1 \\
\end{matrix} \right]
\end{align}$
Therefore, the inverse of the matrix $\left[ A+B \right]$ is $\left[ \begin{matrix}
-\frac{1}{2} & \frac{4}{3} \\
\frac{2}{3} & -1 \\
\end{matrix} \right]$; invertible matrix.
For the inverse $A$ and inverse $B$, consider the matrix,
$A=\left[ \begin{matrix}
2 & 1 \\
3 & 1 \\
\end{matrix} \right]$
$B=\left[ \begin{matrix}
4 & 7 \\
1 & 2 \\
\end{matrix} \right]$
The inverse of the matrix is:
${{A}^{-1}}=\frac{1}{ad-bc}\left[ \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right]$
Compare the value, to get,
$\begin{align}
& {{A}^{-1}}={{\left[ \begin{matrix}
2 & 1 \\
3 & 1 \\
\end{matrix} \right]}^{-1}} \\
& =\frac{1}{-1}\left[ \begin{matrix}
1 & -1 \\
-3 & 2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-1 & 1 \\
3 & -2 \\
\end{matrix} \right]
\end{align}$
$\begin{align}
& {{B}^{-1}}=\frac{1}{1}\left[ \begin{matrix}
2 & -7 \\
-1 & 4 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
2 & -7 \\
-1 & 4 \\
\end{matrix} \right]
\end{align}$
Therefore the expression,
$\begin{align}
& {{A}^{-1}}+{{B}^{-1}}=\left[ \begin{matrix}
-1 & 1 \\
3 & -2 \\
\end{matrix} \right]+\left[ \begin{matrix}
2 & -7 \\
-1 & 4 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & -6 \\
2 & 2 \\
\end{matrix} \right]
\end{align}$
The inverse of ${{A}^{-1}}+{{B}^{-1}}$ is $\left[ \begin{matrix}
1 & -6 \\
2 & 2 \\
\end{matrix} \right]$
Hence, ${{\left[ A+B \right]}^{-1}}\ne {{A}^{-1}}+{{B}^{-1}}$ and $A+B$ is invertible. Hence, the statement is false.