Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.4 - Multiplicative Inverses of Matrices and Matrix Equations - Exercise Set - Page 934: 87

Answer

The provided statement is false.

Work Step by Step

Assuming the matrix, $A=\left[ \begin{matrix} 2 & 1 \\ 3 & 1 \\ \end{matrix} \right],B=\left[ \begin{matrix} 4 & 7 \\ 1 & 2 \\ \end{matrix} \right]$ Now, we will simplify the expression ${{\left[ A+B \right]}^{-1}}={{A}^{-1}}+{{B}^{-1}}$ as below, $A=\left[ \begin{matrix} 2 & 1 \\ 3 & 1 \\ \end{matrix} \right],B=\left[ \begin{matrix} 4 & 7 \\ 1 & 2 \\ \end{matrix} \right]$ For the expression, $\begin{align} & \left[ A+B \right]=\left[ \begin{matrix} 2 & 1 \\ 3 & 1 \\ \end{matrix} \right]+\left[ \begin{matrix} 4 & 7 \\ 1 & 2 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 2+4 & 1+7 \\ 3+1 & 1+2 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 6 & 8 \\ 4 & 3 \\ \end{matrix} \right] \end{align}$ Now, The inverse of matrix $\left[ A+B \right]$ is equal to: ${{\left[ A+B \right]}^{-1}}=\frac{1}{ad-bc}\left[ \begin{matrix} d & -b \\ -c & a \\ \end{matrix} \right]$ Now, compare the matrix to the original matrix. So, $\begin{align} & a=6 \\ & b=8 \\ & c=4 \\ & d=3 \end{align}$ Now, the inverse is: ${{\left[ A+B \right]}^{-1}}=\frac{1}{ad-bc}\left[ \begin{matrix} d & -b \\ -c & a \\ \end{matrix} \right]$ Substitute the values to get, $\begin{align} & {{\left[ A+B \right]}^{-1}}=\frac{1}{ad-bc}\left[ \begin{matrix} d & -b \\ -c & a \\ \end{matrix} \right] \\ & =\frac{1}{-6}\left[ \begin{matrix} 3 & -8 \\ -4 & 6 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} -\frac{1}{2} & \frac{4}{3} \\ \frac{2}{3} & -1 \\ \end{matrix} \right] \end{align}$ Therefore, the inverse of the matrix $\left[ A+B \right]$ is $\left[ \begin{matrix} -\frac{1}{2} & \frac{4}{3} \\ \frac{2}{3} & -1 \\ \end{matrix} \right]$; invertible matrix. For the inverse $A$ and inverse $B$, consider the matrix, $A=\left[ \begin{matrix} 2 & 1 \\ 3 & 1 \\ \end{matrix} \right]$ $B=\left[ \begin{matrix} 4 & 7 \\ 1 & 2 \\ \end{matrix} \right]$ The inverse of the matrix is: ${{A}^{-1}}=\frac{1}{ad-bc}\left[ \begin{matrix} d & -b \\ -c & a \\ \end{matrix} \right]$ Compare the value, to get, $\begin{align} & {{A}^{-1}}={{\left[ \begin{matrix} 2 & 1 \\ 3 & 1 \\ \end{matrix} \right]}^{-1}} \\ & =\frac{1}{-1}\left[ \begin{matrix} 1 & -1 \\ -3 & 2 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} -1 & 1 \\ 3 & -2 \\ \end{matrix} \right] \end{align}$ $\begin{align} & {{B}^{-1}}=\frac{1}{1}\left[ \begin{matrix} 2 & -7 \\ -1 & 4 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 2 & -7 \\ -1 & 4 \\ \end{matrix} \right] \end{align}$ Therefore the expression, $\begin{align} & {{A}^{-1}}+{{B}^{-1}}=\left[ \begin{matrix} -1 & 1 \\ 3 & -2 \\ \end{matrix} \right]+\left[ \begin{matrix} 2 & -7 \\ -1 & 4 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1 & -6 \\ 2 & 2 \\ \end{matrix} \right] \end{align}$ The inverse of ${{A}^{-1}}+{{B}^{-1}}$ is $\left[ \begin{matrix} 1 & -6 \\ 2 & 2 \\ \end{matrix} \right]$ Hence, ${{\left[ A+B \right]}^{-1}}\ne {{A}^{-1}}+{{B}^{-1}}$ and $A+B$ is invertible. Hence, the statement is false.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.