Answer
The inverse of the inverse of $A$ is $A$ itself.
Work Step by Step
Consider the given matrix,
$A=\left[ \begin{matrix}
3 & 5 \\
2 & 4 \\
\end{matrix} \right]$
The inverse of matrix $A$ is equal to the following,
${{A}^{-1}}=\frac{1}{ad-bc}\left[ \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right]$
Compare the matrix to the original matrix. So,
$\begin{align}
& a=3 \\
& b=5 \\
& c=2 \\
& d=4
\end{align}$
The inverse is,
${{A}^{-1}}=\frac{1}{ad-bc}\left[ \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right]$
Substitute the values to get,
$\begin{align}
& {{A}^{-1}}=\frac{1}{ad-bc}\left[ \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right] \\
& =\frac{1}{\left( 3 \right)\left( 4 \right)-\left( 5 \right)\left( 2 \right)}\left[ \begin{matrix}
4 & -5 \\
-2 & 3 \\
\end{matrix} \right] \\
& =\frac{1}{12-10}\left[ \begin{matrix}
4 & -5 \\
-2 & 3 \\
\end{matrix} \right] \\
& =\frac{1}{2}\left[ \begin{matrix}
4 & -5 \\
-2 & 3 \\
\end{matrix} \right] \\
& {{A}^{-1}}=\left[ \begin{matrix}
2 & -\frac{5}{2} \\
-1 & \frac{3}{2} \\
\end{matrix} \right]
\end{align}$
Therefore, the inverse of the matrix ${{A}^{-1}}$ is $\left[ \begin{matrix}
2 & -\frac{5}{2} \\
-1 & \frac{3}{2} \\
\end{matrix} \right]$. Now, the inverse of ${{A}^{-1}}$ is:
$\begin{align}
& a=2 \\
& b=-\frac{5}{2} \\
& c=-1 \\
& d=\frac{3}{2} \\
\end{align}$
Simplifying it for the inverse,
$\begin{align}
& {{\left[ {{A}^{-1}} \right]}^{-1}}=\frac{1}{\left( 2 \right)\left( \frac{3}{2} \right)-\left( -\frac{5}{2} \right)\left( -1 \right)}\left[ \begin{matrix}
\frac{3}{2} & \frac{5}{2} \\
1 & 2 \\
\end{matrix} \right] \\
& =\frac{1}{\frac{1}{2}}\left[ \begin{matrix}
\frac{3}{2} & \frac{5}{2} \\
1 & 2 \\
\end{matrix} \right] \\
& {{\left[ {{A}^{-1}} \right]}^{-1}}=\frac{2}{1}\left[ \begin{matrix}
\frac{3}{2} & \frac{5}{2} \\
1 & 2 \\
\end{matrix} \right]
\end{align}$
Which equals the original matrix $A$.