Answer
The inverse is $ A=\left[ \begin{matrix}
1 & 1 & 1 \\
3 & 5 & 4 \\
3 & 6 & 5 \\
\end{matrix} \right]$.
Work Step by Step
Consider the given matrix, $ A=\left[ \begin{matrix}
1 & 1 & -1 \\
-3 & 2 & -1 \\
3 & -3 & 2 \\
\end{matrix} \right]$
We have to find the inverse of matrix $ A $ by using a calculator. We will follow the steps given below:
(1) We select the matrix $ A $ from the matrix edit menu and then enter or accept the dimensions.
(2) Use ${{2}^{nd}}$ and press the matrix button.
(3) Select the matrix $ A $ and use the function ${{X}^{-1}}$ for the inverse of matrix $ A $ and press enter.
(4) We find the ${{A}^{-1}}$
Therefore, the inverse of the matrix $ A $ is
$\left[ \begin{matrix}
1 & 1 & 1 \\
3 & 5 & 4 \\
3 & 6 & 5 \\
\end{matrix} \right]$.
Now, check the result: show that $ A{{A}^{-1}}=I $. When we multiply matrix $ A $ with ${{A}^{-1}}$ we obtain the identity matrix, so the given matrix is correct.