Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.4 - Multiplicative Inverses of Matrices and Matrix Equations - Exercise Set - Page 934: 73

Answer

The expression is $ X=\left\{ \left( 1,2,-1 \right) \right\}$

Work Step by Step

Consider the given system of equations: $\begin{align} & 3x-2y+z=-2 \\ & 4x-5y+3z=-9 \\ & 2x-y+5z=-5 \end{align}$ The linear system can be written as: $ AX=B $ $\left[ \begin{matrix} 3 & -2 & 1 \\ 4 & -5 & 3 \\ 2 & -1 & 5 \\ \end{matrix} \right]\left[ \begin{matrix} x \\ y \\ z \\ \end{matrix} \right]=\left[ \begin{matrix} -2 \\ -9 \\ -5 \\ \end{matrix} \right]$ The solution is given by $ X={{A}^{-1}}B $; consequently, we must find ${{A}^{-1}}B $ by using a graphic calculator. We will follow the steps given below: (1) Select the matrix $ A $ from the matrix edit menu and then enter or accept the dimensions. Next, select the matrix $ B $ and enter the elements in the matrix. (2) Use ${{2}^{nd}}$ and press the matrix button. (3) Select the matrix $ A $ and use the enter button and then use the function ${{X}^{-1}}$ for multiplication of the matrix. (4) Then use the ${{2}^{nd}}$ button and press the matrix button or select matrix $ B $ and press the enter button. (5) Press the enter button to get the value of ${{A}^{-1}}B $. Therefore, $ X=\left[ \begin{align} & 1 \\ & 2 \\ & -1 \\ \end{align} \right]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.