Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.4 - Multiplicative Inverses of Matrices and Matrix Equations - Exercise Set - Page 934: 88

Answer

The provided statement is False.

Work Step by Step

Consider the given matrix $A=\left[ \begin{matrix} 1 & -3 \\ -1 & 3 \\ \end{matrix} \right]$. Now, we check if the matrix is invertible or not. Consider the matrix, $A=\left[ \begin{matrix} 1 & -3 \\ -1 & 3 \\ \end{matrix} \right]$ The inverse of matrix $\left[ A \right]$ is equal to, ${{\left[ A \right]}^{-1}}=\frac{1}{ad-bc}\left[ \begin{matrix} d & -b \\ -c & a \\ \end{matrix} \right]$ Compare the matrix to the original matrix. So, $\begin{align} & a=1 \\ & b=-3 \\ & c=-1 \\ & d=3 \end{align}$ Substitute the values to get, $\begin{align} & {{\left[ A \right]}^{-1}}=\frac{1}{ad-bc}\left[ \begin{matrix} d & -b \\ -c & a \\ \end{matrix} \right] \\ & =\frac{1}{3-3}\left[ \begin{matrix} 3 & 3 \\ 1 & 1 \\ \end{matrix} \right] \\ & =\frac{1}{0}\left[ \begin{matrix} 3 & 3 \\ 1 & 1 \\ \end{matrix} \right] \end{align}$ So, $ad-bc=0$, which shows that the matrix is not invertible. Hence, the statement is False. If $ad-bc\ne 0$ Then, the matrix is invertible and the statement will be true.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.