Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.5 - Trigonometric Equations - Exercise Set - Page 703: 41

Answer

The solutions in the interval $[0,2\pi )$ are $\frac{2\pi }{3},\,\ \pi,\,\ \text{ and }\ \text{ }\!\!~\!\!\text{ }\frac{4\pi }{3}$.

Work Step by Step

We have to solve the equation on the interval $[0,2\pi )$; the following will be the course of action. Start with: $2{{\cos }^{2}}x+3\cos x+1=0$ Solve it as $\begin{align} & 2{{\cos }^{2}}x+2\cos x+\cos x+1=0 \\ & 2\cos x\left( \cos x+1 \right)+1\left( \cos x+1 \right)=0 \\ & \left( 2\cos x+1 \right)\left( \cos x+1 \right)=0 \end{align}$ Each factor needs to be calculated as follows: $\begin{align} & 2\cos x+1=0 \\ & 2\cos x=0-1 \\ & \cos x=-\frac{1}{2} \end{align}$ or $\begin{align} & \cos x+1=0 \\ & \cos x=0-1 \\ & \cos x=-1 \end{align}$ Then, solve for $x$ on the interval $[0,2\pi )$. In the quadrant graph, the value of cosine is $-\frac{1}{2}$ at the angle of $\frac{2\pi }{3}$ and $\frac{4\pi }{3}$. It implies, $\begin{align} & \cos x=\cos \frac{2\pi }{3} \\ & x=\frac{2\pi }{3} \end{align}$ $\begin{align} & \cos x=\cos \frac{4\pi }{3} \\ & x=\frac{4\pi }{3} \end{align}$ In the quadrant graph, the value of cosine is $-1$ at the angle of $\pi $. It implies, $\begin{align} & \cos x=\cos \pi \\ & x=\pi \end{align}$ These are the proposed solutions of the cosine function. Thus, the actual solutions in the interval $[0,2\pi )$ will be $\frac{2\pi }{3},\ \,\pi,\ \,\text{ and }\ \text{ }\!\!~\!\!\text{ }\frac{4\pi }{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.