Answer
The solutions in the interval $[0,2\pi )$ are $\frac{\pi }{9}$, $\frac{4\pi }{9}$, $\frac{7\pi }{9}$, $\frac{10\pi }{9}$, $\frac{13\pi }{9}$, and $\frac{16\pi }{9}$.
Work Step by Step
We know that the period of the tangent function is $\pi $. In the interval $(0,\,\,\pi ]$, the only value for which the tangent function equals $\sqrt{3}$ is $\frac{\pi }{3}$.
All the solutions to $\tan 3x=\sqrt{3}$ are given by:
$\begin{align}
& 3x=\frac{\pi }{3}+n\pi \\
& x=\frac{\pi }{9}+\frac{n\pi }{3}
\end{align}$
Where n is any integer. The solutions in the interval $[0,2\pi )$ are obtained by letting $n=0$, $n=1$, $n=2$, $n=3$, $n=4$, and $n=5$. And the equation is calculated by taking first $n$ as 0 and then as 1, 2, 3, 4, and 5. It can be further simplified as follows.
$\begin{align}
& x=\frac{\pi }{9}+\frac{n\pi }{3} \\
& =\frac{\pi }{9}+\frac{0\times \pi }{3} \\
& =\frac{\pi }{9}+0 \\
& =\frac{\pi }{9}
\end{align}$
$\begin{align}
& x=\frac{\pi }{9}+\frac{n\pi }{3} \\
& =\frac{\pi }{9}+\frac{1\times \pi }{3} \\
& =\frac{\pi }{9}+\frac{1\pi }{3} \\
& =\frac{\pi +3\pi }{9}
\end{align}$
$=\frac{4\pi }{9}$
$\begin{align}
& x=\frac{\pi }{9}+\frac{n\pi }{3} \\
& =\frac{\pi }{9}+\frac{2\times \pi }{3} \\
& =\frac{\pi }{9}+\frac{2\pi }{3} \\
& =\frac{\pi +6\pi }{9}
\end{align}$
$=\frac{7\pi }{9}$
$\begin{align}
& x=\frac{\pi }{9}+\frac{n\pi }{3} \\
& =\frac{\pi }{9}+\frac{3\times \pi }{3} \\
& =\frac{\pi }{9}+\frac{3\pi }{3} \\
& =\frac{\pi +9\pi }{9}
\end{align}$
$=\frac{10\pi }{9}$
$\begin{align}
& x=\frac{\pi }{9}+\frac{n\pi }{3} \\
& =\frac{\pi }{9}+\frac{4\times \pi }{3} \\
& =\frac{\pi }{9}+\frac{4\pi }{3} \\
& =\frac{\pi +12\pi }{9}
\end{align}$
$=\frac{13\pi }{9}$
$\begin{align}
& x=\frac{\pi }{9}+\frac{n\pi }{3} \\
& =\frac{\pi }{9}+\frac{5\times \pi }{3} \\
& =\frac{\pi }{9}+\frac{5\pi }{3} \\
& =\frac{\pi +15\pi }{9}
\end{align}$
$=\frac{16\pi }{9}$