Answer
The solutions in the interval $[0,2\pi )$ are $\frac{5\pi }{16}$, $\frac{7\pi }{16}$, $\frac{13\pi }{16}$, $\frac{15\pi }{16}$, $\frac{21\pi }{16}$, $\frac{23\pi }{16}$, $\frac{29\pi }{16}$ and $\frac{31\pi }{16}$.
Work Step by Step
We know that the period of the sine function is $2\pi $. In the interval there are two values at which the sine function is $-\frac{\sqrt{2}}{2}$. One is $\pi +\frac{\pi }{4}=\frac{5\pi }{4}$ and since sine is negative in quadrant IV, the other value is:
$\begin{align}
& 2\pi -\frac{\pi }{4}=\frac{8\pi -\pi }{4} \\
& =\frac{7\pi }{4}
\end{align}$
Therefore, all the solutions to $\sin 4x=-\frac{\sqrt{2}}{2}$ are given by:
$\begin{align}
& 4x=\frac{5\pi }{4}+2n\pi \\
& x=\frac{5\pi }{16}+\frac{n\pi }{2}
\end{align}$
Or,
$\begin{align}
& 4x=\frac{7\pi }{4}+2n\pi \\
& x=\frac{7\pi }{16}+\frac{n\pi }{2}
\end{align}$
Where n is any integer. The solutions in the interval $[0,2\pi )$ are obtained by letting $n=0$, $n=1$, $n=2$, and $n=3$. The equation is calculated by taking first $n$ as 0 and then as 1, 2, and 3. It can be further simplified as follows.
$\begin{align}
& x=\frac{5\pi }{16}+\frac{n\pi }{2} \\
& =\frac{5\pi }{16}+\frac{0\times \pi }{2} \\
& =\frac{5\pi }{16}+0 \\
& =\frac{5\pi }{16}
\end{align}$
$\begin{align}
& x=\frac{5\pi }{16}+\frac{n\pi }{2} \\
& =\frac{5\pi }{16}+\frac{1\times \pi }{2} \\
& =\frac{5\pi }{16}+\frac{1\pi }{2} \\
& =\frac{5\pi +8\pi }{16}
\end{align}$
$=\frac{13\pi }{16}$
$\begin{align}
& x=\frac{5\pi }{16}+\frac{n\pi }{2} \\
& =\frac{5\pi }{16}+\frac{2\times \pi }{2} \\
& =\frac{5\pi }{16}+\frac{2\pi }{2} \\
& =\frac{5\pi +16\pi }{16}
\end{align}$
$=\frac{21\pi }{16}$
$\begin{align}
& x=\frac{5\pi }{16}+\frac{n\pi }{2} \\
& =\frac{5\pi }{16}+\frac{3\times \pi }{2} \\
& =\frac{5\pi }{16}+\frac{3\pi }{2} \\
& =\frac{5\pi +24\pi }{16}
\end{align}$
$=\frac{29\pi }{16}$
The second equation is also computed by taking first $n$ as 0 and then as 1, 2, and 3. It can be further simplified as follows.
$\begin{align}
& x=\frac{7\pi }{16}+\frac{n\pi }{2} \\
& =\frac{7\pi }{16}+\frac{0\times \pi }{2} \\
& =\frac{7\pi }{16}+0 \\
& =\frac{7\pi }{16}
\end{align}$
$\begin{align}
& x=\frac{7\pi }{16}+\frac{n\pi }{2} \\
& =\frac{7\pi }{16}+\frac{1\times \pi }{2} \\
& =\frac{7\pi }{16}+\frac{\pi }{2} \\
& =\frac{7\pi +8}{16}
\end{align}$
$=\frac{15\pi }{16}$
$\begin{align}
& x=\frac{7\pi }{16}+\frac{n\pi }{2} \\
& =\frac{7\pi }{16}+\frac{2\times \pi }{2} \\
& =\frac{7\pi }{16}+\frac{2\pi }{2} \\
& =\frac{7\pi +16}{16}
\end{align}$
$=\frac{23\pi }{16}$
$\begin{align}
& x=\frac{7\pi }{16}+\frac{n\pi }{2} \\
& =\frac{7\pi }{16}+\frac{3\times \pi }{2} \\
& =\frac{7\pi }{16}+\frac{3\pi }{2} \\
& =\frac{7\pi +24\pi }{16}
\end{align}$
$=\frac{31\pi }{16}$