Answer
The solutions in the interval $[0,2\pi )$ are $\frac{5\pi }{24}$, $\frac{7\pi }{24}$, $\frac{17\pi }{24}$, $\frac{19\pi }{24}$, $\frac{29\pi }{24}$, $\frac{31\pi }{24}$, $\frac{41\pi }{24}$ and $\frac{43\pi }{24}$.
Work Step by Step
We know that the period of the cosine function is $2\pi $. In the interval there are two values at which the cosine function is $-\frac{\sqrt{3}}{2}$. One is $\frac{5\pi }{6}$ . The cosine is negative in quadrant III, thus the other value is:
$\begin{align}
& 2\pi -\frac{5\pi }{6}=\frac{12\pi -5\pi }{6} \\
& =\frac{7\pi }{6}
\end{align}$
Therefore, all the solutions to $\cos 4x=-\frac{\sqrt{3}}{2}$ are given by:
$\begin{align}
& 4x=\frac{5\pi }{6}+2n\pi \\
& x=\frac{5\pi }{24}+\frac{n\pi }{2}
\end{align}$
Or,
$\begin{align}
& 4x=\frac{7\pi }{6}+2n\pi \\
& x=\frac{7\pi }{24}+\frac{n\pi }{2}
\end{align}$
Where, n is any integer. And the solutions in the interval $[0,2\pi )$ are obtained by letting $n=0$, $n=1$, $n=2$, and $n=3$. The equation is calculated by taking first $n$ as 0 and then as 1, 2, and 3. It can be further simplified as follows.
$\begin{align}
& x=\frac{5\pi }{24}+\frac{n\pi }{2} \\
& =\frac{5\pi }{24}+\frac{0\times \pi }{2} \\
& =\frac{5\pi }{24}+0 \\
& =\frac{5\pi }{24}
\end{align}$
$\begin{align}
& x=\frac{5\pi }{24}+\frac{n\pi }{2} \\
& =\frac{5\pi }{24}+\frac{1\times \pi }{2} \\
& =\frac{5\pi }{24}+\frac{1\pi }{2} \\
& =\frac{5\pi +12\pi }{24}
\end{align}$
$=\frac{17\pi }{24}$
$\begin{align}
& x=\frac{5\pi }{24}+\frac{n\pi }{2} \\
& =\frac{5\pi }{24}+\frac{2\times \pi }{2} \\
& =\frac{5\pi }{24}+\frac{2\pi }{2} \\
& =\frac{5\pi +24\pi }{24}
\end{align}$
$=\frac{29\pi }{24}$
$\begin{align}
& x=\frac{5\pi }{24}+\frac{n\pi }{2} \\
& =\frac{5\pi }{24}+\frac{3\times \pi }{2} \\
& =\frac{5\pi }{24}+\frac{3\pi }{2} \\
& =\frac{5\pi +36\pi }{24}
\end{align}$
$=\frac{41\pi }{24}$
The second equation is also computed by taking first $n$ as 0 and then as 1, 2, and 3. It can be further simplified as follows.
$\begin{align}
& x=\frac{7\pi }{24}+\frac{n\pi }{2} \\
& =\frac{7\pi }{24}+\frac{0\times \pi }{2} \\
& =\frac{7\pi }{24}+0 \\
& =\frac{7\pi }{24}
\end{align}$
$\begin{align}
& x=\frac{7\pi }{24}+\frac{n\pi }{2} \\
& =\frac{7\pi }{24}+\frac{1\times \pi }{2} \\
& =\frac{7\pi }{24}+\frac{\pi }{2} \\
& =\frac{7\pi +12}{24}
\end{align}$
$=\frac{19\pi }{24}$
$\begin{align}
& x=\frac{7\pi }{24}+\frac{n\pi }{2} \\
& =\frac{7\pi }{24}+\frac{2\times \pi }{2} \\
& =\frac{7\pi }{24}+\frac{2\pi }{2} \\
& =\frac{7\pi +24}{24}
\end{align}$
$=\frac{31\pi }{24}$
$\begin{align}
& x=\frac{7\pi }{24}+\frac{n\pi }{2} \\
& =\frac{7\pi }{24}+\frac{3\times \pi }{2} \\
& =\frac{7\pi }{24}+\frac{3\pi }{2} \\
& =\frac{7\pi +36}{24}
\end{align}$
$=\frac{43\pi }{24}$