Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.5 - Trigonometric Equations - Exercise Set - Page 703: 39

Answer

The solutions in the interval $[0,2\pi )$ are $\frac{\pi }{2}$, $\frac{7\pi }{6}$, and $\frac{11\pi }{6}$.

Work Step by Step

We have to solve the equation on the interval $[0,2\pi )$; the following will be the course of action. Start with: $2{{\sin }^{2}}x-\sin x-1=0$ Solve it as: $\begin{align} & 2{{\sin }^{2}}x-2\sin x+\sin x-1=0 \\ & 2\sin x\left( \sin x-1 \right)+1\left( \sin x-1 \right)=0 \\ & \left( 2\sin x+1 \right)\left( \sin x-1 \right)=0 \end{align}$ Each factor needs to be calculated as: $\begin{align} & 2\sin x+1=0 \\ & 2\sin x=0-1 \\ & \sin x=-\frac{1}{2} \end{align}$ Or, $\begin{align} & \sin x-1=0 \\ & \sin x=0+1 \\ & \sin x=1 \end{align}$ Then, solve for $x$ on the interval $[0,2\pi )$. In the quadrant graph, the value of sine is $1$ at the angle of $\frac{\pi }{2}$. It implies, $\begin{align} & \sin x=\sin \frac{\pi }{2} \\ & x=\frac{\pi }{2} \end{align}$ In the quadrant graph, the value of sine is $-\frac{1}{2}$ at the angle of $\frac{7\pi }{6}$, and $\frac{11\pi }{6}$. It implies, $\begin{align} & \sin x=\sin \frac{7\pi }{6} \\ & x=\frac{7\pi }{6} \end{align}$ $\begin{align} & \sin x=\sin \frac{11\pi }{6} \\ & x=\frac{11\pi }{6} \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.