Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 660: 100

Answer

The inverse of the function is $f\left( x \right)={{f}^{-1}}\left( x \right)={y}'=\frac{1+x}{1-x}$.

Work Step by Step

We have to compute the inverse as follows: Let $f\left( x \right)=y$ So, $\begin{align} & y=\frac{x-1}{x+1} \\ & y\left( x+1 \right)=x-1 \\ & yx+y=x-1 \end{align}$ Then, solving the equation: $\begin{align} & xy-x=-1-y \\ & x\left( y-1 \right)=-1-y \\ & x\left( y-1 \right)=-\left( 1+y \right) \\ & x=\frac{-\left( 1+y \right)}{\left( y-1 \right)} \end{align}$ And the value of x is, $x=\frac{1+y}{1-y}$ Now, replacing $x$ by ${y}'$ and $y$ by $x$ to get, $\begin{align} & {y}'=\frac{1+x}{1-x} \\ & \text{inverse of }f\left( x \right)={{f}^{-1}}\left( x \right) \\ & ={y}' \\ & =\frac{1+x}{1-x} \end{align}$ Thus, the result is $f\left( x \right)={{f}^{-1}}\left( x \right)={y}'=\frac{1+x}{1-x}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.