Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 660: 95

Answer

See the full explanation below.

Work Step by Step

${{\operatorname{\ln e}}^{{{\tan }^{2}}x-{{\sec }^{2}}x}}$ We use the value of $\operatorname{\ln e}$, which is equal to $1$, and take out the common “minus” sign to simplify the provided expression, $\begin{align} & {{\operatorname{lne}}^{{{\tan }^{2}}x-{{\sec }^{2}}x}}={{\tan }^{2}}x-{{\sec }^{2}}x \\ & =-\left( -{{\tan }^{2}}x+{{\sec }^{2}}x \right) \end{align}$ Rearrange the terms and apply the Pythagorean identity $1+{{\tan }^{2}}x={{\sec }^{2}}x$, which can be further derived as, ${{\sec }^{2}}x-{{\tan }^{2}}x=1$. Then, $\begin{align} & -\left( -{{\tan }^{2}}x+{{\sec }^{2}}x \right)=-\left( {{\sec }^{2}}x-{{\tan }^{2}}x \right) \\ & =-1 \end{align}$ Thus, the left side of the expression is equal to the right side, which is ${{\operatorname{\ln e}}^{{{\tan }^{2}}x-{{\sec }^{2}}x}}=-1$. Hence, it is proved that ${{\operatorname{\ln e}}^{{{\tan }^{2}}x-{{\sec }^{2}}x}}=-1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.