Answer
The expression in terms of the function $\cos x$ is $\frac{1}{\cos x}$.
Work Step by Step
In order to write the above expression in terms of the function $\cos x$ , the following course of action needs to be followed as,
$\frac{\tan x+\cot x}{\csc x}=\frac{\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}}{\frac{1}{\sin x}}$
Now, the basic rule of reversing the fraction is to be followed by reversing the denominator and the numerator:
$\begin{align}
& \left( \frac{\sin x}{\cos x}+\frac{\cos x}{\sin x} \right)\frac{\sin x}{1}=\frac{{{\sin }^{2}}x}{\cos x}+\frac{\sin x\cos x}{\sin x} \\
& =\frac{1-{{\cos }^{2}}x}{\cos x}+\frac{\cos x}{1} \\
& =\frac{1-{{\cos }^{2}}x}{\cos x}+\frac{{{\cos }^{2}}x}{\cos x} \\
& =\frac{1}{\cos x}
\end{align}$
Therefore, the $\frac{\tan x+\cot x}{\csc x}$ expression is written in the terms of the function $\cos x$ as $\frac{1}{\cos x}$.
Hence, the expression in terms of the functions $\cos x$ is $\frac{1}{\cos x}$.