Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 660: 68

Answer

The expression in terms of the function $sinx$ is $\frac{1}{sinx}$.

Work Step by Step

By using the reciprocal identity of trigonometry $\sec x=\frac{1}{\cos x}$ , and $cscx=\frac{1}{sinx}$ , and the quotient identity of trigonometry $\tan x=\frac{\sin x}{\cos x}$. The above expression can be further solve as, $\frac{\sec x+\csc x}{1+\tan x}=\left( \frac{\frac{1}{\cos x}+\frac{1}{\sin x}}{1+\frac{\sin x}{\cos x}} \right)$ Now, multiply the numerator and denominator of $\frac{\sec x+\csc x}{1+\tan x}$ by $\sin x\cos x$; then we get, $\frac{\sec x+\csc x}{1+\tan x}=\left( \frac{\frac{1}{\cos x}+\frac{1}{\sin x}}{1+\frac{\sin x}{\cos x}} \right)\frac{\sin x\cos x}{\sin x\cos x}$ Further solve as, $\begin{align} & \left( \frac{\frac{1}{\cos x}+\frac{1}{\sin x}}{1+\frac{\sin x}{\cos x}} \right)\frac{\sin x\cos x}{\sin x\cos x}=\frac{\frac{\sin x\cos x}{\cos x}+\frac{\sin x\cos x}{\sin x}}{\sin x\cos x+\frac{{{\sin }^{2}}x\cos x}{\cos x}} \\ & =\frac{\frac{{{\sin }^{2}}x\cos x+\sin x{{\cos }^{2}}x}{\cos x\sin x}}{\frac{\sin x{{\cos }^{2}}x+{{\sin }^{2}}x\cos x}{\cos x}} \end{align}$ Now, invert the above expression and multiply. Then we get, $\begin{align} & \frac{\frac{{{\sin }^{2}}x\cos x+\sin x{{\cos }^{2}}x}{\cos x\sin x}}{\frac{\sin x{{\cos }^{2}}x+{{\sin }^{2}}x\cos x}{\cos x}}=\frac{{{\sin }^{2}}x\cos x+\sin x{{\cos }^{2}}x}{\cos x\sin x}\times \frac{\cos x}{\sin x{{\cos }^{2}}x+{{\sin }^{2}}x\cos x} \\ & =\frac{1}{\sin x} \end{align}$ Thus, the provided expression is written in the terms of the function $\sin x$ as $\frac{1}{sinx}$. Hence, the expression $\frac{\sec x+\csc x}{1+\tan x}$ in terms of the function $sinx$ is $\frac{1}{sinx}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.