Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 660: 72

Answer

The expression in terms of the function $tanx$ is $\tan x$.

Work Step by Step

By using the function given to express the trigonometric relationship between the expression and the function: $\left( \sec x+\csc x \right)\left( \sin x+\cos x \right)-2-\cot x=\sec x\sin x+\sec x\cos x+\csc x\sin x+\csc x\cos x-2-\cot x$ By using the reciprocal identity of trigonometry $\sec x=\frac{1}{\cos x}$ , and $cscx=\frac{1}{sinx}$. And the above expression can be further solve as, $\frac{1}{\cos x}\times \sin x+\frac{1}{\cos x}\times \cos x+\frac{1}{\sin x}\times \sin x+\frac{1}{\sin x}\times \cos x-2-\cot x=\frac{\sin x}{\cos x}+1+1+\frac{\cos x}{\sin x}-2-\cot x$ Apply the quotient identity of trigonometry $tanx=\frac{sinx}{\cos x}$ , and $\cot x=\frac{\cos x}{sinx}$. And the above expression can be further solve as, $\begin{align} & \frac{\sin x}{\cos x}+1+1+\frac{\cos x}{\sin x}-2-\cot x=\tan x+2+\cot x-2-\cot x \\ & =\tan x \end{align}$ Thus, the given expression is written in terms of the function $\tan x$ as $\tan x$. Hence, the expression $\left( \sec x+\csc x \right)\left( \sin x+\cos x \right)-2-\cot x$ in terms of the function $\tan x$ is $\tan x$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.