Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 660: 93

Answer

See the explanation below.

Work Step by Step

$\frac{\sin x-\cos x+1}{\sin x+\cos x-1}$ And the identity has to be further simplified with the help of multiplying with the same fraction $\begin{align} & \frac{\sin x-\cos x+1}{\sin x+\cos x-1}=\frac{\sin x-\cos x+1}{\sin x+\cos x-1}\times \frac{\sin x-\cos x-1}{\sin x-\cos x-1} \\ & =\frac{{{\sin }^{2}}-2\cos x\sin x+{{\cos }^{2}}x-1}{{{\sin }^{2}}x-2\sin x-{{\cos }^{2}}x+1} \\ & =\frac{{{\sin }^{2}}x+{{\cos }^{2}}x-2\cos x\sin x-1}{\sin {{x}^{2}}-2\sin x-\left( 1-{{\sin }^{2}}x \right)+1} \\ & =\frac{1-2\cos x\sin x-1}{{{\sin }^{2}}x-2\sin x+\sin {{x}^{2}}} \end{align}$ Further solving the expression: $\begin{align} & \frac{1-2\cos x\sin x-1}{{{\sin }^{2}}x-2\sin x+\sin {{x}^{2}}}=\frac{-2\cos x\sin x}{2{{\sin }^{2}}x-2\sin x} \\ & =\frac{-2\sin x\cos x}{2\sin x\left( \sin x-1 \right)} \\ & =\frac{-\cos x}{\sin x-\cos x} \\ & =\frac{-\cos x}{\sin x-1}\times \frac{\sin x+1}{\sin x+1} \end{align}$ Further simplification of expression: $\begin{align} & \frac{-\cos x}{\sin x-1}\times \frac{\sin x+1}{\sin x+1}=\frac{-\cos x\left( \sin x+1 \right)}{{{\sin }^{2}}x-1} \\ & =\frac{-\cos x\left( \sin x+1 \right)}{-{{\cos }^{2}}x} \\ & =\frac{-\cos x\left( \sin x+1 \right)}{-{{\cos }^{2}}x} \\ & =\frac{\sin x+1}{\cos x} \end{align}$ Hence, the left side of the expression is equal to the right side, which is $\frac{\sin x-\cos x+1}{\sin x+\cos x-1}=\frac{\sin x+1}{\cos x}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.