Answer
$ c=3.88$
$\angle A =21.3^{\circ}$
and $\angle B=68.7^{\circ}$
Work Step by Step
The trigonometric ratios are as follows: $\sin \theta= \dfrac{opposite}{hypotenuse}$ ; $\cos \theta= \dfrac{Adjacent}{hypotenuse}$ and $\tan \theta= \dfrac{Opposite}{Adjacent}$
$ c=\sqrt{a^2+b^2}=\sqrt{(1.46)^2+(3.6)^2}=3.88$
$\tan A =\dfrac{a}{b} \implies \angle A=arctan (7/18)=21.3^{\circ}$
and $\angle B=90^{\circ}- 21.3^{\circ}=68.7^{\circ}$
So, $ c=3.88$
$\angle A =21.3^{\circ}$
and $\angle B=68.7^{\circ}$