Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 4 - Review Exercises - Page 646: 109

Answer

The exact value of the provided expression is $-\frac{\sqrt{10}}{10}$.

Work Step by Step

Let us assume $\theta ={{\tan }^{-1}}\left( -\frac{1}{3} \right)$. Then, $\tan \theta =-\frac{1}{3}$ As we know that $\tan \theta $ is negative, $\theta $ lies in the fourth quadrant. Now, by using the Pythagorean theorem: $\begin{align} & {{r}^{2}}={{x}^{2}}+{{y}^{2}} \\ & {{r}^{2}}={{3}^{2}}+{{\left( -1 \right)}^{2}} \\ & r=\sqrt{9+1} \\ & r=\sqrt{10} \end{align}$ Then, the value of the given expression is $\begin{align} & \sin \left[ {{\tan }^{-1}}\left( -\frac{1}{3} \right) \right]=\sin \theta \\ & =\frac{y}{r} \\ & =\frac{-1}{\sqrt{10}} \\ & =-\frac{1}{\sqrt{10}} \end{align}$ And rationalize the denominator as follows: $\begin{align} & -\frac{1}{\sqrt{10}}=-\frac{1}{\sqrt{10}}\times \frac{\sqrt{10}}{\sqrt{10}} \\ & =-\frac{\sqrt{10}}{10} \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.